Retrieval-Augmented Generation (RAG) revolutioniert die natürliche Sprachverarbeitung, indem es Retrieval-Mechanismen mit generativen Modellen kombiniert, um präzisere Ergebnisse zu erzielen. Der hier besprochene Artikel bietet eine umfassende Analyse der RAG-Technologie, beleuchtet ihre Architektur und zeigt auf, wie sie wissensintensive Aufgaben bewältigt. Er untersucht technologische Fortschritte, Anwendungen in Bereichen wie Fragenbeantwortung und Textzusammenfassung sowie aktuelle...
RAG – Retrieval-Augmented Generation: Die Zukunft der Sprachmodellierung für wissensintensive Aufgaben
mehr lesen